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1. Abstract e
w, t,
A The elastic field in a half-space indented by a rigid sphere is iﬁ
accurately described by Hertz' equations if the contact radius is small \
|$
) compared with that of the sphere. For wider contact the equations are ;}
b '
,x} not expected to be reliable, but are nevertheless often used for %3
K ; convenience. This paper describes some of the errors which may develop
i: as contact widens, and presents a second elastic field which provides Y
0 : .
" a first order correction. From this it is possible to estimate the e
2 bt
‘A probable error introduced in a particular variable by applying the Hertz -
o .
. "
‘< equations beyond the recommended range. N
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A Some useful relations between same familiar elastic indentation P
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1. Introduction

It was clearly stated by Hertz (1881) that his solution for the
elastic field due to pressure between spheres should be applied only to
contact regions of radius small compared with that of the spheres. His
formulae have, for many years, been applied to the indenting of a flat
elastic specimen by a hard sphere, and found accurate and reliable in the
range a/R < 0.1, where a, R are the radii of contact and of the sphere
respectively.

| The the;ry has also been used beyond this value, and the Hertz
formulae now form the basis of an ever-widening range of methods for
testing and determining the properties of materials. Because of this, it
is of interest to calculate another term in the elastic solution, extending
its range to larger a/R, in order to make clear the conditions under which
this second term may safely be ignored.

In this paper we imagine a rigid sphere pressed on an elastic
half-space, and calculate the displaced form of the initially flat surface
using Hertz' equations. It is shown that there is some misfit between the
deformed surface and the sphere, and a second elastic field is developed as
a correction. The theory of this second stress field is described in
detail in §3, and some relevant comments of a more general nature are made
in §4. The latter section may, however, be omitted by the reader who wishes
to proceed to the applications in §5. Finally the method of correction is
demonstrated in the practical case of determining the elastic modulus E of
a pliant material.

The displacements, stresses and strains are those of first order

linear elasticity theory throughout.
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Errors in Hertz' solution for lLarge a

For a rigid spherical indenter pressed with load F on the flat
surface of an elastic half-space, the components of displacement up and w
as given by the Hertz theory are:

-(1 - 2V)F
471 Gp

(1 -1 - pz/a2)3/z)

3 o
3 - vF (2 - 02/a2)
16 G a

within the contact area o < a. Here v and G are Poisson's ratio and the

shear modulus respectively, and the cylindrical axes p,¢,z are as

indicated in fig.!.
Near the Z axis, these displacements give very close fit of the

deformed surface to a sphere of radius R where

HI

1/RH = 3(1 - V)F/8G a3 (2)

since the w displacement defines a parabola with this value of maximum
curvature. But as p increases the parabola diverges from the sphere, and
the w displacement therefore introduces a growing gap, while the up
component tends to close it. For large values of Poisson's ratio,v, the
component w has the greater effect, since up > 0 as v + 0.5. So for large
v the Hertz solution creates a gap between sphere and surface in the outer
part of the contact region, despite the transmission of pressure there.
In other words, coptact is lost over part of the "contact area”.

For small values of v the component up is dominant, bringing the
indented surface actually within the volume of the sphere. For intermediate
values of v there is an approximate balance between the two, gap or

overlap depencing on the extent of contact a/R.

In fig.2 are curves indicating the gaps and overlaps implicit in the
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§E calculated at p = 0.9a in each case, since this is near the position of Ei
:ég : max imum u,- The error for small v :s always an overlap, whicl. increases Eé
= with decreasing v and with increasing a/R. é
‘ii These errors, although small, show a logical inconsistency in &
,zt applying the Hertz theory outside the range a/R .2, since the prescribed g;
; pressure cannot readily be transmitted across a gap, nor can sphere and ;.
.33 specimen occupy the same point in space. The value of the contact radius, ”i
. X
*: a, for a given load and sphere radius, becomes doubtful also, but it is ‘:
p not immediately apparent whether larger or smaller values woild reduce the Lr
A4 )
# errors in fig.2. Since the values of a are commonly used in e¢stimates of &}
- ;
)3 strength and toughness derived from the indentation of hard, brittle i(
materials, the question of their accuracy becomes important. s
A .
! To investigate this, better fitting contact may be made by combining :‘
:; the Hertz field with another exact elastic one (the parabolic pressure ‘$
pod field) in proportions ! + di+=d, where d is a small parameter, so that ’,
;% each of the two separate solutions, and the combined one, applies the same
.é load F to the same contact area p < a. This means that a is fixed, while
f; the parameter d is varied and adjusted so as to make the displaced surface "
S; as nearly spherical as possible over the whole contact area. The value of FE
ﬁi d is found in this way for each value of F, and thence a modified form of :§
4 equation (2). X
b :
) : But first the new elastic field must be described. :ﬁl
i 3

: 3. The parabolic distribution of pressure

A force F applied normally tc the contact area may be distributed

as pressure p given by:

§ :
¢I
)
&

p = 2F(a2 - pz)/na4 for p < a
(3)
= 0 for p>a
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which resembles a paraboloid of revolution, with value 2F/7ra2 on the z
axis, zero at the contact edge. This case was mentioned by Boussinesq
(1885 pl49) who calculated the norma. displacement w of the compressed

surface as

v+ 2[,1 [

w o= ~ I3 at p = O
TR (A +R)
(4)
R
TR (A+u)
where his (X + 2u)/u( XA+ p) = 2(1 - v)/G. Further details of this

field do not appear to have been published, but may readily be found by
using Boussinesq' harmonic functions as described by Love (1929).

If a function X is defined by the equation

’

Xlo,z) = j

where dS is an element of the contact area 0 < p < a, r its distance

J-p log (z + r) ds (5)

from the field point (p,i?, z), and if

N/ 3dz

jfp r-1 das (6)

then x.and V are harmonic functions from which we may calculate the

1}

Vip,2)

stresses and displacements, throughout the regiocn z > 0, caused by the

given applied pressure p. The stresses are given by:

2 2
21:0p = 2\;-,3—‘]- -(1—2\))-8—%L —zé—%
z 3c 30
- - 13V (1 -2v) 33X _z 3V
2a|0¢ 2v 3z 5 3 0 ap (7)
2 EN 2 82V
o = — - —_—
z 3z W2
9z
271 = - ¢ 23!
""pz dpaz

The other shear stresses are zero. For the displacements uD and w we

nave
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46 u = -(1-2v) %’—‘ -zg—"
P 0 (8)
471G w = 2(1 = v}V ~ 2z 3!
az
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and from these equations the whole field may in principle be determined, by

)
-
-t
N

g .

substituting a particular form such as (3) for the pressure p in (5).

But it is not always easy to calculate X and V from (5) and (6) as
explicit functions of p and z, although V has been determined for the
Hertz pressure distribution, and %% found for the case of a uniform
pressure (Love, 1929). The function V is also known for pressures due to
smooth rigid indenters of flat or conical form (Love 1939, Green 1947) but
attempts to solve the present case of parabolic pressure (3) have not yet
been successful.

However, much can be done with the surface and axial values of the

functions, which are readily determined. We have, on p = O,

‘a
= (p,)
v(o'z) = znjo E.._ZEJ———;’! p‘ dp.
(27 + p, ©)

4F 2 2.3/2 3 2
Sa [ 2(z° + a™) - 227 - 3a zJ

v _  4F 2 2.5 _ 2 _ 2|
2 A [ 2z (2~ + a’) 2z a” |
- "2 X
P 3 (9)
I T
892
2 2
92 a (z° + a”)
- _-2- w
p 9
2
i g AV




since V and X have axial symmetry anl satisfy Laplace's equation. For

the function X we may integrate V with respect to z:

(0,2} = {V dz
7 J

2 2 2
R 2z (a2 + z )3/ + 3a z(a2 +
1]

3a

”

2L
+ 3a4 log (z + (a2 +z2)°) -6 a222 + const}

Equations (7) to (10) determine the stress components and w on the z axis.

To find their values at other points we observe that V as given by
(9), but regarded as a function of a complex variable z, is an analytic
function of z in a domain which includes the origin. It is therefore
possible to express V as an integral of the same function of

(z + ip cos 8) (see Whittaker and Watson, 1946, »399). For, if

R
“ b

v(0,z) g{z} in (9)

,"l: .

p 4

£ o
[ 2

>
D

L

Vip,z) = | g(z + ip cos &) A4t (11)
"o

O
s

2

0

in a region surrounding the origin. Similar relations may. be written

~
<

\'4 . 3V . . , :
down for %; and 321 since they also are harmonic, but this does not

NN

apply to the derivatives with respect to p.

‘. &

Although these integrals may be cumbersome for an arbitrary point

MO N

CEAELS SN
fe =

(p,z), they can readily be evaluated on the surface, where z = 0 and p < a:

. L (e 24,3/2
V(Dlo) WJO 3a4

o

o .'a q

8)3

2
( 2(a” - p2 cos

STl Ty
LI INC 'Y
,

A
v f'{f ;
eyt et

1*

+ 2ip3 cos3e - 3ia29 cose) de
n/2
2 1.\%;
a - LZCOSO)/” d8

a

(in agreement with Boussinesq p.150)

{ 22 - k%E - (1 - kz)KJ (12)




* A e L O AN X AT A AL :
\\:V:\‘:\';\': AL LALARAN MENCAEA A LAl S L N S AR T T R AR ) A Ta TS T L B N PR NN ¥

N

I°3
where E, K are complete elliptic int-jrals of modulus k = f/a. Similarly

::4
i
§
-
;
}
{- !
'
i

oV (p,0) _ 4F 2 _ 2

3z - 4 (o a’)
a
sz 2 2

x(p.0) = = (4a” -~ p“) + const.

4
4a
%E - B o) (13)

a

These equations, with (7) and (8), give the displacements and
stresses on the contact area. At points }gbo) on the free surface outside
the contact region the stress components and %ﬂ take their usual values
corresponding to the load F (see Way, 1940), and w is found from
Boussinesq' integral (1885 p.150).

The results for the parabolic pressure distribution are summarised

below.
(1) On the z axis, where p = o:
u = 0
. p

® w = L 7 [_4(1 - v)(a2 + 22)3/2 - 622(a2 + 22)5
F?: 3nGa.
b
S
‘_" - 3(1 - 2v)a2z + 201 + 2v)z3]
) g = —2F4- [ (3 + 2v) z(al2 + zz)l’ - (3 + 2\&)2.2
EFZ e na
?32 - (1 + 2v)a2/2 - azz(a2 + 22)-%J (14,)
L. ’
L
F’ﬂ.’_' ’
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Q
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{(1i) For z o, 0 < a:
2 - 4
u = (1 = 2v) F p (227 - .7)/47Ga

§(1 - ) Fi 2(2 - x°

i

w Y E - (1 - kz)gj /9m°Ga

E,K being elliptic integrals of modulus k = p/a.

- ‘) .
o = r/ 5+ 2v) IR TR 2va” ) /2ma”
- ) (14, )
/ 2 4 li
) = F ((1 + BV) o7 = 201 + 2v)a” /2ma
¢
2
o, = =2F (a” - ¢7Y/7a
(iii) For o > a, z = o, 31- = E
Ip o]
u = -(1 - 2V)F/41Go (14_, .}
5 iii
2
o = (1 - 2v)F/ 210" = =~ 02
3 = 2
z

as for any symmetric distribution cf the load F (Way 1940) but w is here:

r 2.2

! 2 2 2 q 2

wo= B(1- WP (2 - k) - kK + 202" - D E| /9m°Ga "k
where the elliptic integrals now have modulus k = a/o.

From equation (14ii) the curvature of the displaced surface at the
axis is

3

1/Rp = 2(1 - V)F/71Ga
and the vertical displacement there is

wyooo= 40 - v) F/37Ga (15)
so that this field‘gives a slightly deeper and more pointed indent than
the Hertz formulae. The maximum pressure, at the centre of the contact
area, is

2

- o, = 2F /na (16)

or twice the mean pressure.

This completes our description of the parabolic pressure field,

which is used as a correction to the Hertz solution in §5. But first,
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since other contact problems may rec¢uire similar corrections, we briefly

describe in 54 a few simple pressurc fields and some useful relations

: % "‘ “_..‘ L 2

between them. This section may, however, be omitted by the reader who

re

Ay

wishes to proceed to §5.

PO

.

Some simple pressure fields

In linear elasticity theory many [roblems are solved by combining

i 4

L

separate known stress fields in suitable proportions. This present paper

= ol

makes use of the Hertz solution and the parabolic pressure field, but there
are three other well-known axially-symmetric cases, namely the flat punch
(Boussinesq 1885 p.158), the conical punch (Love 1939) and the case of
uniform pressure (Boussinesg p.140, Love 1928). To these we may add the
linear or conical pressure field. Some interesting properties of these
fields and same relations between them are worth mentioning here.

Arranged in two groups of three, the six cases are displayed in
Table I, with diagrams of the pressure distribution and the shape of each

indentation, and with the corresponding formulae alongside, Since these

fields may be combined linearly it is often possible to build the shape of

a required pressure distribution or given indentation from these known fields.

bl 2L SRR

The process is simple if the contact area is the same in each case.

5.

Alternatively, a given pressure distribution may be represented

.
Ay

)

approximately by applying uniform pressure (B1 in Table I) to smaller

¥y ;'

contact areas of radii a/n, 2a/n ... (n-1)a/n, a, so making a stepwise

approach to the required curve, becoming closer as n increases. Both B2

and 83 (in Table 1) may be regarded as integrals of 81 in this way, but it

is not so easy to build a required indentation shape, such as a parabola,

¢ de.; ?:

LR
‘.I‘A

1; 

Az, or cone, A3, by superposing solutions A1 for varying contact, because

% l.... .(

the non-zero displacements w outside the contact must be included in the

d. .
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10.

N

...

calculation. K
Now having seen the parabclic pressure as an integral of simple t.
v‘:'

uniform ones with respect to a, we may reverse this process and regard the .
whole stress field B1 as a derivative of 132 or B3, and the flat punch Al as &.
O
a derivative of Hertz, as follows. r:..

L

<

As described by Love (1929) the elastic stress field of a particular
Age
pressure distribution may be derived from a single harmonic function ¥, by y
using eqns. (5) to (8) in §3. For the Hertz case, "’
e o

3F Tayy2im 2 2

x(o.z)=———] (a-p)5log(z+r)p d¢ dp o
H 3 1 1 1 s

2na B

o o ..-
S
Ao
where r is the distance between the field point (p, o, z) and a point >y
[ "_‘

(pl' $, o) in the contact area. If we write this: '
a/lzan '

3 _ 3F 2 2. % \

a’xg = 37 \fojo (a py) " log (z + rlp, d¢ dp, N

3
then a3)(H is a continuous function of a for any j'l.ﬁied point (p,z). We may sé
>

therefore differentiate this function with respect to a, and so obtain another .}"’
harmonic function of op,2z; -
&

] 3 IFa (2 21'1’(z+r) N
= @y = 5= =23tz 2 2 b, abdop 3
3a H ij jo (a2 _ 912)5 1 1 g
(since the pressure is zero at Py = a). But for a load F applied with a L,
\.¢

-
rigid flat circulay punch (case Ai) the fundamental harmonic function is Xp S
. ¢

where '
. _F (e 2n log (z + 1) ~d
Xp 2 7.5 Py 46 doy Z

2wa J °ojo (@ -p,7) S
v}v

3 T

a(a 2
@" xg)  ;  3a (17)

sa
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This is the simple relation bec:ween the two elastic fields, and by
interchanging the order of differentiation it is possible to regard a
component of the flat punch field as a simple derivative of the corresponding
Hertz component.

For example, the displacement up in the contact area, for the flat

punch is given by:

u_ (punch) = i T (a3 u_ (Hertz))
p 3 2 3a P
a
_ -(12— 2V)F g% (a3 _ (a2 _ 92)3/2)
3a” 4nGp
_ =1 - 2v)F _ 2 _ 2 b
= Z;ES;——_ (a (a p7) %)

Similarly the function Vv, that is %ﬁ , for the flat punch is

F -1 ,a
VF T a tan (z)

on the z axis, where the Hertz function is

vV, = ELN { (a2 + zz) tam-1 (a/2) - az)
H 3
2a
So again Vp = -15 g% (a3 VH)
3a

These two related fields have simple algebraic expressions defining
both the vettica{ displacement and applied pressure in the contact area,
and were described by Boussinesq as the two simplest cases (1885 footnote
p 206). BHe did not mention the case of the conical punch (Love (1939)
Harding and Sneddon (1945) Green (1949)) which has a simple linear

displacement




12.

in the contact circle, perhaps because of an infinity in the pressure,

p = 55 oy (a+ a’- )" - log o)

Ta
This conical punch field (A3 on Table I) is also related to the flat punch

solution by a simple differentiation

= — — (a X ) (18)

where Xo is the fundamental function for the conical punch. Equations
similar to (18) relate corresponding components of the two fields.

The three solutions Ay, A and A, of Table I therefore form one group,

2 3
and the relations (17) and (18) between them can be used to reduce tedious

calculations, or to check a derived formula.

The other three solutions Bl' B, and B3 are related in a similar way.

2

For if xp is the fundamental function for the parabolic pressure problem
(Bz),'then
9 4
X, = —% 5= f(a x))
4a3 da P

is the function for Love's case of uniform pressure (Bl)' and moreover

. 1 2 3
X, = > 7a (a xL) (19)
3a

L
where Xy, relates to the linear (or conical) pressure distribution (33).

The related stress fields Bl' B, and B, of this second family do not

2 3
have as simple expressions for the displacement as the A group. Instead,
w i3 expressed in terms of complete elliptic integrals of modulus (p/a),
and the calculation of stresses is more difficult than in the cases A.

However, the axial values are quite tractable, as was shown in §3, and may
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be found from V(0,z) using equations (7). For an arbitrary point (p,z)

the fields of 32 and B3

The relations (17), (18) and (19) between these different fields of

require furiier simplification of the integrals.

elastic contact can be useful in practical calculations both as a check
and as a wider view. The parabolic pressure field which we are using here
can now be seen not as a strange new field but in its rightful place,
being related to the uniform pressure problem 558 as Hertz is related to

the flat punch.

5. The combined solution

This section may be read as if directly following §3.
A linear combination of the two elastic fields is formed:

(1 + d) Hertz - 4 (parabolic) (20)

with d a positive parameter which is to be determined. Each displacement,
strain or stress component of the combined field is of the form (20), with
the same load F and contact radius a for the combined as for the separate
fields.

Then if the combined solution is to give an indent which fits against
a rigid sphere in 0 < p < a, the best value of d must be found for each F,
that is, the d value which makes the displaced surface closest to a sphere.

The criterion chosen for this is quite simple. Taking x, y axes not
from O but from th? lowest point of the displacedsurface in fig.1, the
coordinates of a surface element originally at (p,0) are:

X = p + u

(21)

Yy = vw,- v

where v° is the vertical displacement at p = 0. The set of points (x,y)

o g _» v

)
(8
i
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.

‘, corresponding to values of p less than a all lie on a sphere of radius R
A with centre on the z axis if:
\ x2+ (R—y)2=R2

1
> This requires

'J': (x2 + yz)/2y = constant = R (22)
'; ' and this has been used to find d for various values of the load. The

\!

::: fitting process determines not only d for that load but also the radius R
1Y of the sphere which would give that a at the given load F. For very small
\.- loads 4 is zero, since the Hertz solution is accurate there. For larger
W . )
E: loads d increases almost linearly with the mean contact pressure (’{ ‘9 4‘)
(\'

N Values of 4 have been found in this way at various loads for three
:—f values of Poisson's ratio, v = 0.1, 0.25 and 0.4. The results are shown in
o

';% Table I1I, and also the values of the ralo a,/R of the indent, with the Hertz
htir, i

; ralip a/RH for comparison. R differs from RH for many of the wider contacts,
'\ but does not vary in a simple predictable way. A numerical correction

{
,':; factor D(d) is defined by R = RH/D(d) , and this also is shown in Table II,
[ -

4 .

adirfar=y",

:' The same results are displayed graphically in fig.3, where the

.‘.'
q..s- straight dashed line indicates the simple proportionality of mean pressure
»
o)

“' to a/RH as in eqn. (2), and curves are drawn for the modified relations
R a/R = D(). 3(1 - V)F/8 Ga’ (23)

"‘

g = D(d)a/R
15 (d)§/Ry

s
I A showing the effect of the correction factor D(d). This equation may also
15
be written:

Ly

™ 3

N a”~ =.D(d) 3(1 - V)F R/8G
& = p(@ a’ (24)

: H

showing that (D(d))l/ 3 is the correction factor for a as calculated from

.
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f‘.’

-

known F and R by the Hertz forxula. The curves are drawn up to a/R ~ 0.8,

a o

although not many materials are car ble of perfect elasticity to this Q

NAALARK

extent.

e M
.

It may be seen from fig.3 that for v = 0.1 the ratio a/R is always o)

o'l"
L7

Pd
-

‘i? greater than the Hertz value, while for v = 0.4 it is less. For v = .25 :l
2 -
’ the difference changes sign at about a/R = 0.5, with a/R less than the <
g ;
f:- Hertz value in the upper range. The difference in the lower range is not ;
-.\l -
“, .
;{- distinguishable in the figure, but a/R exceeds the Hertz value by about 2% ﬁ
- N
at a/R v 0.3.
-E§ Although D(d) = 1| at a/R v .5, so that a = ay and R = RH’ yet there
2 . : s 3
) are corrections to be made nevertheless. For at this point d (é:gli)Puxs The
N
3 !
value 0.27, which modifies each component of the field according to the )
N ~
iﬁ formula (20). For example the maximum pressure under the indenter is now :'
Py
o
ur given by
., k‘.
’ asa 2L - g 28 x
2 7ra TT a .
£
. r
which is less than the Hertz value by 9%, and the depth of the indentation, e
from (1) and (/4), is reduced by nearly 4s. S
The values of d in Table II and fig.4 show that the stress field of h
Hertz is increasingly modified as the contact area widens, requiring
larger proportions of the parabolic field to give a good fit to the sphere. -

But while d is increasing, the correcting factor D(d) may vary from unity
L]

in either direction. This means that, for a given series of increasing

loads, a/R becomes greater than predicted by Hertz if v is small, but less o

than the Hertz value for large v, and changes over at a/R ~ .5 for v = .25, )

The corrected values are not perfect because we are combining only '
two separate curves to fit a circle. After finding the best value of 4,

3&. and the corresponding R, the remaining gap or overlap of sphete and surface
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is given by

L
2 2
x“ + (R~ ¥)7] - R
This remaining misfit is nearly .0003R at a/R = .5, and .001R at
a/R = 0.8. Comparison with fig.2 shows the degree of improvement.
The results presented in Table II and figs. 3,4 may now be used to
estimate errors in practical cases. An example is demonstrated in the

next section.

6. An examgle

Let us suppose that the elastic modulus E of a pliant material is to
be determined experimentally using a hard spherical indenter.

From the Hertz equations (1) and (2) we have, since G = E/2(1 + v),

w, = 3(1 - vZ)F/4Ea
= az/R | (25)
and so
B, = 301 - vAr/ar® v 2 (26)

where W, is the displacement of the rigid indenter from a position just
touching the original flat surface of the specimen (see Cousins, Armstrong
and Robinson 1975). A series of accurate measurements of v, and the
corresponding load F, for a known indenter radius R, gives us values of
EH/(I - vz), or %ﬁ itself if v is known.

If the values of Eﬁ so determined appear to rise {(or fall) with
increasing load, then it is of interest to decide vwhether this is due to
Qnelastic behaviour of the material or merely to the inaccuracy of the
Hertz formulae. This question is readily answered using fig.3, which

displays the calculated curves (23), and the corresponding values of d In {"(9‘4.

Consider first the curve for v = 0.1. The factor D(d) is unity for

@1

.
"2 ’s"2"%

P IRFF IR FL g~ s PR A

!




small contact, increases to 1.05 at a/R ~ .5 where d = .3, then falls

again to 1.01 at a/R ~ .8, d = .55, For w we have the combined form (20),

(1 + 4d) wo(Hertz) -d L (parabolic)
(1 - 0.1317Q) 3(1 - v3)F/4Ea

(1 0.13174) az/RD(d)

Substituting a [D(d) R wol(l - 0.1317d8)] L

gives an equation for E in the corrected form:

E = (1 - 0130702 30 - Vrfir® w Y Z p@®)

/2 !

(1 - 0.1317d)3 EH/D(d) (28)

l'..-.’5' a4

by

From this it appears that, for v = 0.1, the "measured" values of E

AN

",

H'
obtained by using eqn {(26), would exceed the true values E as the load

"-
[ I

increased, the error being 9% for a/R v .5 and 12% for a/R v .8.

1, 84 8y

L
.
e & o+ o 8

Repeating these calculations for v = .25 we find similar behaviour but

a smaller effect, errors now 6% and 8%. Finally for v = .4 the error

X - M

reaches only 1.4% at a/R ~ .5 then decreases to 1% at a/R ~ .8. The Hertz
formqla therefore seems reliable for E determination when v is large, and
this is fortunate, since such v occur in some very pliant glassy polymers
for which an elastic indentation may well reach high values of a/R. The
error remains small because the corrections in numerator and denominator of

eqn (28) are of similar magnitude in this case.
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7. Conclusion

The classic formulae of Hertz, applied to the indentation of an
elastic half-space by a rigid sphere, have been modified to give greater
accuracy for contact areas beyond the usual range. For this purpose a
large part of the elastic field of a parabolic pressure distribution has
been described in detail, and also discussed more generally in relation to
other contact prcoblems.

The parabolic field has been subtracted in small proportions from the
Hertz field, making use of the linearity of the system. The ratios
required to give accurate fit to the sphere at wide contacts have been
calculated for three different values of Poisson's ratio, and displayed
graphically for practical application. Comparing the modified solution
with that of Hertz, the changes in the radius of contact are in general
small, with maximum 4%, but larger corrections were found for the maximum
pressure and for the indentation depth.

As modern pliant materials extend the elastic range of indentation,
and modern methods increase the accuracy of measurement, these results may
be uséful for comparison or reassurance. The theory is first order linear

elasticity throughout.
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Table I.
K—— 2a —3 Contact pressure and displacement. B
Flat punch: I Ef*

P p=Fy 2n:a(c12—p2)/.7' g

f s w=(I-V) F/4Ga, &
Hertz: 3

' 1 13

UL | ottt ana %

A2 . , ;
s W =3(1-VIF(2a=pY) - 3
Cone: | x

ul p=F(log (a-+a’=p} "} -logp) mal, 2

Ag- - l l N
7 = (1= V) F(ra-2p) z E
/<?77 A w= na /2nGa’ {
Uniform: E

5 LLd ) P= F/ndl, %
1 " %

w=2(l=-V)F El(k 2

777777 U=VIREW nlGa, 3
Parabolic: - R

' 2 3
/W//E w =8(|-V)F( 2(2"'(25"'(' K)/9thGo.'t
Linear: :

= 3Fla-p)in ol 3

3 w=6(-y)Fpt(+292+[ & sdk)nlaqd :
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Table II
(1-v)F/Ga’ d a/R alR, D(d)
45 .097 .173 . 169 1.03
.675 .15 .26 .253 1.03
.1 .9 .21 . 352 . 337 1.04
1.35 .32 .526 .506 1.04
1.8 .44 .691 .675 1.02
2.25 .58 .84 .84 1
.187 .03 .07 .07 1
.375 .061 .143 .14 1.02
.562 . 098 .215 211 1.02
.75 .14 . 286 .281 1.02
.25 .94 .18 . 357 . 352 1.02
1.125 .22 .427 .422 1.015
1.31 .27 .493 .491 1
1.35 .29 .504 .506 1
1.5 .32 .558 .562 .99
1.875 .42 .68 .703 .97
2.25 .52 .79 .84 .94
. 375 .04 . 141 .14 1
.6 .068 .225 .225 1
.75 .092 .279 . 281 .99
1.2 .18 .43 .45 .96
.4 1.5 .24 .53 .56 .94
2.25 .4 .73 .84 .86
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Fig.!t Diagram of indented surface showing axes and extent of contact.

Fig.2 The errors in the Hertz theory as a/R increases. Positive

values of RH - R indicate overlap, negative ones a gap.

Fig.3 Mean pressure vs modified extent of contact a/R.

Fig.4 Variation of d with mean pressure for various v.




A YCRER AT LEMN N AT A0 St st ey

S I T Y T T U T T TR T TN DA Stk it et

Fig. 1.

FIG.1,

Diagram of indented surface showing axes

and extent of contact
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